THE EVOLUTION OF ANL CMT GLOVEBOXES

by

Richard F. Malecha, Arthur A. Frigo, and Daniel E. Preuss

Chemical Technology Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

Telephone: (630)252-4510
Fax: (630)252-5735

Submitted for presentation at:

2000 Annual Conference and Equipment Exhibit
of the American Glovebox Society
August 21-23, 2000
New Orleans, Louisiana

The submitted manuscript has been created by
the University of Chicago as Operator of
Argonne National Laboratory ("Argonne")
under Contract No. W-31-109-ENG-38 with the
U.S. Department of Energy. The U.S.
Government retains for itself, and others acting
on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to
reproduce, prepare derivative works, distribute
copies to the public, and perform publicly and
display publicly, by or on behalf of the
Government.

Work supported by the U.S. Department of Energy under
INTRODUCTION

• Argonne National Laboratory

• Chemical Technology Division (CMT)

• Modular Gloveboxes Designed for Experimental Work
 – Laboratory Scale
 – Engineering Scale

• Experimental Work Includes Equipment and Process Development for:
 – Pyrochemical
 – Nuclear Waste Treatment
 – Electrochemistry
HISTORY

• The First ANL-CMT Division Modular Glovebox was Designed and Installed in 1959. It was designated as the CENHAM glovebox.

• Design Objective:
 – Provide Modular Configuration
 – Provide Controlled Atmosphere Environment
 – Maximize Viewing Accessibility
 – Provide “Standardized” Work Area for Laboratory Research Work
 – Provide Modular Utility Service Access
 – Include User-Friendly Considerations
GLOVEBOX DESIGN REQUIRES AWARENESS OF USER NEEDS

• Evolution of Design Over the Past 40 Years

• Request for New Gloveboxes Usually Based Upon Similar Attributes of an Existing Enclosure Plus Particular Project Changes for Use.

• Discussion with Staff and Laboratory Operating Personnel.

• Considerations:
 – Simplicity in Design
 – Cost Saving
 – Schedule

• Defining “What is Necessary” and “What Would be Nice.”
 USER-FRIENDLY GLOVEBOX DESIGN

• Gloveboxes Use a Modular Design Concept

• Glovebox Size is Designated as Modules in Length and Tiers in Height

• Basic Module is 42 inch Cube

• Modular End Plates Provide for:
 – Utility Services
 – Ventilation/Purification System
 – Filter Housings
 – Transfer Locks
 – Bagports
MATERIALS OF CONSTRUCTION

• Steel Shell (Painted)
• Stainless Steel Shell
• Steel Support Frame
• Gloveports
• Glass Windows
THE EVOLUTION OF ANL CMT GLOVEBOXES

STRUCTURE

• Glovebox Shell
• Structural Elements
• Unistrut
• Floor
• End Plates
• Hoists
• Floor Wells
UTILITIES

• Process Feedthroughs for Services
 – Electrical
 – Instrument
 – Gas or Liquid

• Lighting
THE EVOLUTION OF ANL CMT GLOVEBOXES

TRANSFER SYSTEMS

- Bagout
- Large Horizontal Transfer Lock
- Small Horizontal Transfer Lock
- Vertical Transfer Lock
- Sphincter
QA APPLICATION

• Management Control
 – Team Approach
 – Process Development
 – Design and Fabrication
 – Scheduling

• Design Review

• Design for Functionality and Manufacturability Reviews (DFM)

• System Design Description

• Safety Review

• Operational Readiness Review
WINNDOWS

• Window Viewing Area Comprises Approximately 60% of the Glovebox Side Walls that Suffices for Monitoring Experimental Equipment and Process Operation

• Weatherstrip Type “Zipper” Seal Used for Window Installation

• Window Concept
 – Nominal 36 Inch Square Windows and Window Openings with Rounded Corners
 – 3/8 Inch Thick Laminated Safety Glass Windows
 – Gloveports are Attached Through the Windows
GLOVEBOX SUPPORT STAND
4 MODULE - 1 1/2 TIER GLOVEBOX
GAS RECIRCULATION SYSTEM

EMERGENCY INLET OR EXHAUST

BUBBLER

PURIFICATION SYSTEM
GLOVEBOX ASSEMBLY
GLOVEBOX FILTER ACCESSIBILITY
EPOXY RESIN

• Inside Weld Joints are Caulked with an Epoxy Resin.

• The Epoxy Resin (ABAWELD) has been Used on Gloveboxes in CMT for Many Years

• The Caulked Joints Provide a Smooth Corner Fillet Designed for Easy Clean-Up
THE EVOLUTION OF ANL CMT GLOVEBOXES

WEATHERSTRIP INSTALLATION

GUN NOZZLE

SEALING COMPOUND

WEATHERSTRIP

GLASS WINDOW

GLOVEBOX WALL
GLASS TYPE

- Glass laminate per ASTM C1172-91
- Two lite laminate of Kind LA, Class 1, q^3 quality glass
- Each lite is .19 inch thick with overall composite thickness of .38 inch
FAILURE OF GLOVEBOX WINDOW WITH GLOVEPORTS
FAILURE OF GLOVEBOX WINDOW WITHOUT GLOVEPORTS
WINDOW TEST RESULTS

• Window with four gloveports
 – Test terminated due to structural failure of the window glass
 – Cracks developed in the glass extending across the two lower gloveports
 – Test pressure at failure was 17 inches of water
 – No evidence of seal failure
WINDOW TEST RESULTS

• Window without gloveports
 – Test terminated due to structural failure of the window glass
 – Crack developed in the glass radiating out from the center
 – Test pressure at failure was 30 inches of water (> 2 psig)
 – No evidence of seal failure
INTERIOR ENVIRONMENT
ATMOSPHERE

• Flow Controls - Once Through Gas

• Inert Gas Recirculation System - Requires Purification System with Filters

• Pressure Controls
SUMMARY

• Design Approach Based Upon User-Friendly Concept

• Utilization of Existing Component Designs

• Cost Effective

• Schedule

• Adaptable to Project Process Changes Without Losing Overall Effectiveness of “User-Friendly” Approach.